The Angel-Echo Project

Advisor: Dr. Skubic

Grad Student Mentor: Mengxuan (Mary) Ma

Karen Ai and Jordan Hubbard

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Amazon Echo

- Voice enabled wireless speaker
- Capable of voice interaction, making to-do lists, streaming podcasts, other real time information
- Responds to "Alexa" or "Amazon" or "Echo"

Angel Sensor

- Wearable sensor device
- Tracks health information
- Sensors include:
 - Heart rate
 - Skin temperature
 - Steps
 - And more
- Personalize user health status

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Overview of the System

- Create an interactive health care app
- Use information from the Angel Sensor
- Interact with the Amazon Echo

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Objective 1 (Angel Sensor Part)

Implement a smart app that monitors health status

Objective 2 (Amazon Echo Part)

Design a system to receive health status by voice command interface

Objective 3 (Experiments)

 Conduct experiments to analysis the speech recognition accuracy

•Key Results:

- Test the implemented system on different groups of people
- Propose a method to show the speech recognition accuracy
- Compare the results from different groups

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Why the Angel Sensor?

- Open source device
- Unrestricted access to sensor data
- Offers variety of health information
- Bluetooth low energy (BLE)

System Flow Diagram

Angel Sensor

Client Device

DynamoDB

GATT Protocol

- Generic Attribute Profile Service
 - Protocol for data transfer procedures and formats over BLE connected devices
- Attributes
- Handles and UUIDs (Universally Unique Identifiers)
- GATT Hierarchy:
 - Services
 - Characteristics
 - Value
 - Descriptors

GATT Diagram

Subscribing to Characteristics

- PyGattlib python module
- Descriptor attributes
- Notifications (faster)
- Indications (slower)
- In Requester class object, write necessary values to corresponding descriptor attributes
- Pseudo-code with object "req" below where thermometer handle is 26

Write "01" to enable notifications of value characteristics

Write "10" to enable indications of value characteristics

req.write_by_handle(26, str(2))

Enable Thermometer indications

Collecting/Handling Data

Data processing

Step 1

Data retrieved as ascii values

Step 2

Ascii values are converted to hex (binascii python module)

Data sent to AWS DynamoDB database

Step 3

Hex bits are interpreted

Sample Data

Scan	Scan: [Table] biometrics: date, time A Viewing 1 to 36 items						
Sca	Scan 💠 [Table] biometrics: date, time 💠 ^						
	◆ Add filter						
	Start	search					
	date	time	name	pulse	resident_id	skin_temp	steps
	2016-07-18	10:26:29	Hubbard, Jordan	60	109238	82.04	222
	2016-07-18	10:26:34	Hubbard, Jordan	59	109238	82.04	222
	2016-07-18	10:26:39	Hubbard, Jordan	55	109238	82.04	233
	2016-07-18	10:26:45	Hubbard, Jordan	53	109238	82.22	238
	2016-07-18	10:26:50	Hubbard, Jordan	54	109238	82.22	240
	2016-07-18	10:26:55	Hubbard, Jordan	57	109238	82.22	240
	2016-07-18	10:27:00	Hubbard, Jordan	60	109238	82.4	240
	2016-07-18	10:27:05	Hubbard, Jordan	63	109238	82.4	240
	2016-07-18	10:27:10	Hubbard, Jordan	69	109238	82.4	240
	2016-07-18	10:27:15	Hubbard, Jordan	72	109238	82.4	249
	2016-07-18	10:27:20	Hubbard, Jordan	73	109238	82.4	249

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Amazon Echo Procedure

Angel Sensor puts data in database

Access data in database

Amazon Echo reads data for users

The Amazon System

- Database with health info ready
- Must access info

Request & Response

Request & Response

- A cloud web server provides service
- Amazon skill

- Alexa Voice service
- Provide info to users

Speaks to user

Need a web server run a skill program to provide service.

First try with Amazon Lambda server, then lab server.

Amazon Skill & Alexa Skill Kit

- Amazon Echo skill
- is capability that allows users to interact with the device with functionalities of Echo
- Alexa Skills Kit
- Collection of self-service APIs, tools, documentation and code samples

Amazon Skill with Alexa Voice Service

- "Alexa" is the wake word
- "Ask...Doctor" is one of the supported phrases for requesting service
- "Doctor" is the invocation name that identifies the service the customer wants
- "What is my heart rate?" is the specific question that elicits response.
- "heart rate" is the keyword invoke heart rate intent.

Amazon Skill with Alexa Voice Service

Intent Schema*

The schema of user intents in JSON format. For more information, see <u>Intent Schema.</u> Also see built-in slots and built-in intents.

Custom Slot Types

Custom slot types to be referenced by the Intent Schema and Sample Utterances
For general information about custom slots, see <u>Custom Slot Types</u>.

Example: TOPPINGS - cheese | onions | ham (note: newlines displayed as | for brevity)

Type Values

LIST_OF_TYPES pulse | steps | step

Sample Utterances*

Phrases end users say to interact with the skill. For better results, provide as many samples a your Example Phrases on the Description tab.

For more information, see Sample Utterances.

- 1 StatusIntent what is my status
- StatusIntent can you tell me my health status StatusIntent what is happening with my health
- 4 StatusIntent what is going on
- 5 TemperatureIntent what is my {temptype}
 6 TemperatureIntent what is my {temptype} count
- 7 StepIntent what is my step count
- 8 HeartRateIntent what is my heart rate
- 9 TemperatureIntent what is my skin temperature

LaunchRequest – Maps to onLaunch(). Occurs when a user launches a skill without an intent.

IntentRequest – Maps to onIntent(). Occurs when the user specifies an intent.

SessionEndedRequest – Maps to OnSessionEnded(). Occurs when session ends.

StatusIntent:

Get both pulse and step count info, generate a feedback statement

HeartRateIntent:
Get pulse info,
generate a feedback
statement

StatusIntent:

Get step count info, generate a feedback statement

Amazon Skill with Amazon DynamoDB

var docClient
= new AWS.DynamoDB.DocumentClient();
docClient.query(Table information);
Save the information fetched;

Resulting Skill

Lambda Request "session": "sessionId": "SessionId.9b7ac0b6-be82-4db1-bd12 "application": { 'applicationId": "amzn1.echo-sdk-ams.app.60ba "attributes": {}, "user": { "userId": "amzn1.ask.account.AFP3ZWP0S2BGJR70 10 'new": true 13 'request": "type": "IntentRequest". "requestId": "EdwRequestId.25c41840-a75e-424a-8 "timestamp": "2016-07-08T16:44:41Z", "intent": {
 "name": "TemperatureIntent", 18 19 "slots": { 20 "temptype": { "name": "temptype", "value": "pulse" 23 Submit for Certification

Ask: What is my pulse?

Amazon Voice Service

> Skill on Amazon Lambda Service

```
Lambda Response
  2 ion": "1.0",
   3 onse": {
  4 itputSpeech":
  5 type": "PlainText",
6 text": "Your heart rate is 58 . "
  9 content": "PersonalDoc - Your heart rate is 58 .
  10 'title": "PersonalDoc - Health Status",
  11 'type": "Simple"
 13 :prompt": {
  14 'outputSpeech":
 15 "type": "PlainText",
16 "text": ""
 17 -
  18
  19 ouldEndSession": true
 Listen
                                                        Next
```

Data in Database

timestamp	name	pulse	resident_id	skin_temp	steps
2016-06-30 11:13:06	Hubbard, Jord	58	109238	83.12	228

Setting Up a Server

Outside server would run code and access database

• Issues:

- Issuing certification for server
- Finding remote endpoint
- Eventually transitioned back to AWS Lambda Services
 - Runs code in response to events such as changes in data
- Used Amazon DynamoDB as database to enter information

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Experiment

- Test accuracy of voice recognition capabilities
- Recruited members from two age groups
 - 18 30
 - 65 and older
- Compare voice recognition results
- Sense of phrases to focus on

Procedures

- Used Amazon Echo skill
- Created list of phrases
 - Tested key words
 - Tested different sounds
- Had subjects read sentences in controlled environment
- Made adjustments to procedure along the way

Experiment

- Currently female voices picked up more accurately
 - Tested way more females than males
- Certain words picked up incorrectly often
 - Pulse → Pause
 - Enhance
 - Health \rightarrow House
- Ideas about sounds to avoid

Results

Percentage of Words Missed	Older Adults (65 and older)	Younger Adults (18 – 30)
Male	10.9%	3.9%
Female	7.66%	5.58%
All	8.75%	4.6%

Number of Words Missed	Older Adults (65 and older)	Younger Adults (18— 30)
Male	42	22
Female	59	21
All	101	43
Total Words	1155	940

- Background of Devices
- Overview of the System
- Goals
- Work on Angel Sensor
- Work on Amazon Echo
- Experiment
- Conclusion

Conclusion

- Successfully implemented goals
- Experiment provided useful feedback
- Hopefully can improve application and have more detailed experiment

Thank you!