
There exist numerous design challenges in applying the concept of software defined
networking to an ad hoc network of Android devices. One particular issue is that
the ad hoc network is composed of predominately homogenous nodes – Android
smartphones. There is no dedicated location for a server, and each node must be
capable of running all layers of the network abstraction.

Traditional Software Defined Network

Network Switches
running

Network Operating System
instances

End-User Devices

Server
running

 Network Control
Software

Switches Interface with
OpenFlow

Brandon Guttersohn
Undergraduate Researcher

Southeast Missouri State University
bguttersohn@gmail.com

Paul Baskett
Graduate Student Mentor

University of Missouri
pkbkbc@mail.missouri.edu

Yi Shang
Faculty Mentor

University of Missouri
shangy@missouri.edu

Contemporary network schemes are built around the use of
proprietary networking devices interacting with general
autonomy in the area of sending and forwarding network
data. This paradigm presents a handful of issues, including
a lack of transparency in data logistics, and a lack of
centralized, intelligent, network control. Because each of
these devices is controlled by the closed-source firmware of
their manufacturers, researchers and network
administrators are unable to implement experimental
routing rules. However, using software abstractions and
management applications, the network can be controlled
centrally, and treated as a whole. This is the concept of
software defined networking. With this concept as our
inspiration, we seek to design a network management
structure for an ad hoc Wi-Fi network of Android smart
phones, and implement code demonstrating this structure
in action. The structure should simplify network
management, as well as 3rd party application access to
network functions.

Our resulting design is very flexible, and should be conducive
to further implementation of software defined networking
concepts on Android ad hoc networks. The current
implementation has been successfully able to generate a
network map, modify network routing tables, and interface
3rd party applications. The library we created for interfacing 3rd
party applications is simple, and allows data to be sent over
the network with only a few lines of code. Because all 3rd party
application data transmission is managed by virtual
subnetworks, developers can easily find peers running the
same application, and access information about those users,
as well as the local user.

Packet Forwarding Layer Network Operating System Control Software 3rd Party Applications using
the Network

Our Software Defined Android Ad Hoc Network

Each Android Device :
Serves as a Packet-Forwarding Node

Runs an instance of the Network Operating System
Serves as an End User Device, running user software

One must also run the Network Control Software

Devices Interface with
OpenFlow-Inspired Protocol

The packet-forwarding layer is primarily charged
with wrapping the device’s networking hardware,
and obeying the rules it is given with regard to
packet forwarding. It is designed to adhere to a
standard protocol, similar to OpenFlow, which
allows the network control software, via the
network operating system, to modify the packet
forwarding tables of various network nodes.
While the complex decisions and controls are
reserved for higher level abstractions, the packet
forwarding software is in charge of ensuring that
data is sent to its ultimate destination.

The network operating system is the central hub
of the entire control structure. Running on each
device, it sits between the packet forwarding
layer, the control software, and 3rd party
applications. Its responsibilities include:
•Monitoring the state of the network
•Creating a map of the network, for detailed
routing decisions
•Providing an interface for 3rd party applications
•Maintaining virtual subnetworks
•Supplying network information to the control
software and to 3rd party applications
•Possibly, it could be extended to automatically
reroute data flows to bypass network congestion.

The control software is the brain of the network.
This software is trusted to design the network’s
routing algorithm, and create specific routing
rules. The control software can accept specific
rules from the end user, or create the entire
routing scheme automatically. Because this
software communicates with the network
operating system over a well-defined protocol
implemented with the Android Interface
Definition Language, developers can implement
their own control applications. Our
implementation focused on network testing,
exhibition, and direct user control.

3rd party applications interface the software-
defined control structure using a library we
created. Once an application connects to the
network, it joins a virtual network, managed by
the network operating system. This virtual
network is reserved for devices running the
specific 3rd party application, and makes it very
easy for developers to find nearby users. To use
the library, developers need only create a
network connection object with a virtual
network name, application context, and some
implementation of the callback interface to
handle received data. They can then query the
object for network information, and transmit
data.

Launching the software system
via the control application

Viewing the network map, and a
list of network device names.

Viewing the forwarding table for
a network device, while

receiving a route tracing packet

Viewing the details of a
forwarding table entry.

Modifying a forwarding table
entry

Viewing the modified forwarding
table, and receiving an affirmative

route tracing packet

Sending a route tracing packet, to
test whether set rules are being

adhered to.

An example 3rd party application,
which sends and receives text

messages.

