
Remote	
 object	
 localization	
 using	
 Android	

devices	

	

Jacob	
 Luebbers	

Southeast	
 Missouri	
 State	
 University	

jpluebbers1s@semo.edu	

	

Nickolas	
 Wergeles	

University	
 of	
 Central	
 Missouri	

nmw96790@ucmo.edu	

	

	

Aleksandre	
 Lobzhanidze	

Graduate	
 Mentor	

University	
 of	
 Missouri	

agl7dd@mail.mizzou.edu	

	

Dale	
 Musser	

Faculty	
 Mentor	

University	
 of	
 Missouri	

musserda@missouri.edu	

	

Abstract	

	

Given the prevalence of Android devices
in modern society, there are a large
number of practical applications for the
mobile capability of positioning a
remote object. The purpose of this
research project is to explore the
feasibility of a system for locating a
remote object using angle-based
triangulation and to compare that to
results obtained from previously
implemented image-based methods after
they are ported to Android from the
computer. The angle-based
implementation is done using multiple
sensors on an Android device, namely
the GPS and compass. There are two
image-based methods currently
implemented that were ported to
Android. The two methods consist of a
one image and a two image that both use

	

Katherine	
 Tynan	

Truman	
 State	
 University	

ktynan@truman.edu	

	

Hyun	
 Jang	

Graduate	
 Mentor	

University	
 of	
 Missouri	

hjang@mail.missouri.edu	

	

Qia	
 Wang	

Graduate	
 Mentor	

University	
 of	
 Missouri	

qwch9@mail.mizzou.edu	

	

Yi	
 Shang	

Faculty	
 Mentor	

University	
 of	
 Missouri	

shangy@missouri.edu	

	

	

cropping techniques and the OpenCV
library in their implementation. Testing
of the three methods is accomplished by
attempting to pinpoint the location of an
object using a variety of test points that
exhibit numerous possible scenarios.
Preliminary test results are incomplete
and inconclusive, so additional testing
will be conducted in order to properly
draw conclusions.

I.	
 Introduction

The ability to locate a remote object can
be extremely useful in many
professional and recreational activities.
A mobile application that is capable of
doing so could be used to find the
location of landmarks while on vacation,
animals while hunting, or opposing
troops during war. Work on developing

an application that can do so has already
been done by our research group,
focusing on an image-based
implementation. Thus far, one image
and two image-based methods have been
developed on the PC, but only the one
image method has been successfully
ported to Android. It is with that method
that the method developed in this project
will be compared. This project focuses
on the development of an angle-based
implementation of the problem for
Android to test for the feasibility and
accuracy of such a method. Its accuracy
is compared to the test results that the
one image-based method returns, and, in
the future, will be further compared to
the two image-based results should the
port to Android be completed.

II. Method Implementation

The algorithm used to calculate the
location of the remote object uses a
combination of trigonometry and algebra
to utilize the idea of intersecting lines.
First, the slope of the lines formed by the
compass reading is calculated. In order
to do so, the Cartesian angle equivalent
to the compass reading is found. This is
done by subtracting the compass reading
from 90 if it falls in the first three
quadrants and from 450 if it is in the
fourth quadrant, resulting in the
necessary angle measures for
trigonometric equations. The slope is
then found using the equation:

! = tan ! (4)

where m is the slope of the line and ! is
the measure of the angle. Once the slope
is found, the y-intercept of the line can
be found using that slope and the GPS
coordinate of the data set. This is done

by rearranging the slope-intercept form
of a line to:

! = −! ∗! + !

where b is the y-intercept, m is the slope,
x corresponds to the longitude of the
point, and y corresponds to the latitude
of the point. Now that both y-intercepts
are known, the location of the object can
be found by setting the two equations
equal to each other and finding the
intersection. This is accomplished by
rearranging the equation obtained by
that, with the result being:

! = (!! − !!)/(!! − !!)

with x being the longitude of the object,
the b’s are the y-intercepts, and the m’s
are the slopes. Once this is found, all
that remains to be done is finding the
latitude of the object. This is found by
simply plugging the longitude of the
object into the slope-intercept form of
the line created by the data sets. The
result of this is:

! = ! ∗ ! + !

where m and b are the slope and y-
intercept from one of the lines, y is the
latitude of the object, and x is the
longitude of the object.

The method relies heavily on the sensors
present in nearly all Android devices,
namely the GPS and the digital compass.
More specifically, it uses the
getOrientation string of methods to get
the compass readings and the
getLastKnownLocation method in the
locationManager class. Two sets of data
consisting of a GPS coordinate and the
compass heading to the remote object
are necessary for the localization. There

are problems inherent with the sensors
that need to be resolved to get adequate
data from them. First, the digital
compass uses magnetic fields in order to
determine magnetic north. This registers
a large amount of ambient magnetic
noise that results in a rapidly changing
value that has a significant amount of
variance. To best amend this issue, it
was resolved to implement a running
array that takes in each sensor reading
and continually shifts out the oldest
reading. The average of this array is
calculated each time a new sensor
reading is obtained and that average is
what is outputted to the screen, the final
result of which is a significantly more
stable reading. Also, the readings from
the digital compass are for magnetic
north rather than true north, so the
difference between magnetic and true
north needs to be compensated for. This
is achieved by using the built-in
function, getDeclination. This is a
function in the GeomagneticField class,
which contains the GPS coordinates,
altitude, and time of the GPS fix. The
getDeclination function uses those
members of the class to calculate the
difference between magnetic and true
north and this value is added to the angle
given by the compass, which results in a
compass heading relative to true north.

Once the location of the object is known,
all that remains to do is plot the points
onto a map to show the location of all
three points. This is done by creating a
new activity that has only a map object
in the view and plots overlays onto the
map. The data is also put into a text file
for future reference.

III. Experimental Method

Testing of the angle-based method is
accomplished using a systematic set of
distance and angle combinations. The
experiment is set up in an open area with
a central object that allows for a
multitude of positions at consistent
ranges located all around the object,
ideally encircling it. A range finder is
used to find the distance from an object
to the phone capturing the data. Ranges
of 10, 25, 50, and 75 yards are used,
with 3 distinct data sets being taken, two
of which had acute angles at the point of
intersection and the last having an obtuse
angle. In addition to those tests,
additional test points were taken where
the points were not equidistant from the
object and the angle formed by the line
connecting the two points and the
compass heading from point 1 to the
object is obtuse. For each distance or
angle combination, two data points must
be captured in order for the program to
calculate the location of the object. The
error is calculated by comparing the
distance between the points given by
GPS to the actual location of the object
and the location the program returned
and dividing by the true distance.

IV. Results

The experiments resulted in an average
of 53.8% error in terms of distance
between the points. There was a very
wide range of values of error, from 1.7%
to 328.4%. Figure 1 shows the error for
all the data sets, namely the error in
distance between point 1 and the object,
point 2 and the object, and the average
of the two. It shows that other than a
few data sets, they are mostly consistent.
Interestingly enough, the drastically
inaccurate data sets all fall into one
category of tests, which is where the two

lines met to form an obtuse angle at the
object. When these are removed to
make a graph of only data of sets
forming acute angles, it looks much
different, as shown in figure 2 and the
average error drops to 37.29%.

In comparison, the one image-based
method gives back very accurate results
on the whole. As shown in figure 3, the
results are fairly consistent and only the
worst tests resulted in error of over 20%.
The average error produced by the one
image-based method is 10.96%, with the
minimum error being 2.04% and the
maximum being 25.75%.

V. Conclusion

On the whole, the one image-based
method is much more accurate than the
angle-based method. The one downside
of the image-based method is the
necessity of knowing the physical size of
the object. Since this is frequently
unknown, it has a limited range of
effective applications. If the size is
known, it produces good results, but if
not, it is impractical, so the angle-based
method would be the better choice in
those instances.

Due to the fact that the two most
inaccurate test results coincided with the
instances where the accuracy returned by
the GPS was also very low, it is probable
that some of the error is caused by the
sensors used in the data collection. Data
is collected from each sensor twice for
each data set, so the error caused by the
sensors is compounded upon themselves,
which leads to a drastic increase in the
overall error. The accuracy of the digital
compass is unable to be ascertained by
the equipment available, so its effect on

the error of the results is uncertain, but it
could have a significant effect as well.	

Since the image-based method produces
more accurate results, it should be used
whenever possible, namely, in the
circumstances where the physical size of
the object is known. Since it is useless
when the size is unknown, the presence
of another method is necessary in order
for any sort of application to be practical
in most circumstances. There is a
working two image-based method on the
PC, but it has not been successfully
ported to Android at the time of writing,
so the angle-based method is the best
alternative available. So, even though
the angle-based implementation is not
consistently accurate, it would be good
to have it as an alternative whenever the
image-based method is unusable.

VI. Future Work

The next step in the development of the
angle-based method is to add the
functionality to share information
between two phones to calculate the
object’s location. This will allow for a
greater level of flexibility in its usage
due to the ability for simultaneous data
collection. Additional ideas should be
pursued that could potentially remove
some of the data read in from the sensors
to help eliminate some of the error. For
example, a method could be explored
that gets angles relative to the other
point directly rather than needing two
GPS points to calculate the angles.
Achieving this would lead to only
needing one GPS reading, which could
decrease the error in the method. Also,
more work should be done in completing
the port of the two image-based method
to Android. If it is successfully ported
and capable of producing timely and

consistently accurate results, it should
replace the angle-based method due to
the level of inaccuracy present in its
results.

VII. References

(1) http://code.google.com/android/

(2) http://developer.android.com/index.

html

(3) http://stackoverflow.com/

(4) http://www.brightstorm.com/math/tr

igonometry/advanced-
trigonometry/angle-inclination-of-a-
line

VIII. Graphs

0	

50	

100	

150	

200	

250	

300	

350	

10	
 10	
 10	
 10	
 10	
 12	
 14	
 23	
 27	
 25	
 25	
 25	
 50	
 50	
 50	
 75	
 75	
 75	

Pe
rc
en
t	
 E
rr
or
	

Distance(Yards)	

Figure	
 1	

Point1	

Point2	

Average	

0	

20	

40	

60	

80	

100	

10	
 10	
 10	
 10	
 12	
 14	
 23	
 27	
 25	
 25	
 50	
 50	
 75	
 75	

Pe
rc
en
t	
 E
rr
or
	

Distance(Yards)	

Figure	
 2	

Point1	

Point2	

Average	

0	

20	

40	

60	

80	

100	

11	
 13	
 18	
 20	
 26	
 28	
 37	
 37	
 46	
 46	
 66	
 70	
 78	
 81	

Pe
rc
en
t	
 E
rr
or
	

Distance(yards)	

Figure	
 3	

Phone	
 1	

Phone	
 2	

