
1

Reliable IP Multicast
Adam Ryan
Michael Henderson

Basic Multicast

• One-to-many connections
• Many-to-many connections
• Possible uses:

• Streaming video and audio
• Software distribution
• Online gaming

2

Unicast vs. Multicast

• Unicast
• TCP packets
• Reliable transfer of data
• Inefficient for large scale communication

• Multicast
• UDP packets
• Easy transfer of data between server and client
• Requires too much error correction and

monitoring to be effective in today’s Internet

TCP vs UDP

• TCP (Transmission Control
Protocol)
• Reliable transfer
• Dependent travel

• UDP (User Datagram Protocol)
• Unreliable transfer
• Independent travel

3

Multicast over WLAN

• Makes good use of bandwidth for
each receiver that joins a multicast
group

• Must use some kind of algorithm to
retransmit data which a client might
not properly receive.

IP Multicast

• Uses a Class D IP address (224.0.0.0
– 234.255.255.255)

• Allows servers/clients to join and drop
the connection at any time

• Data is transferred to the IP address
by the server and retrieved by the
clients

4

Background

• Original Goal: Add multicast ability to
Classroom Presenter and test it over a
wireless network

• Classroom Presenter 2.0 already has an
IP multicast feature

• Easier to measure reliability with our own
program

Reliable IP Multicast

• Goal: To test a simple IP multicast
setup within the test bed over a
wireless network

• Things we measured:
• Reliability
• Efficiency
• Effectiveness of error correction/detection

5

The Test Bed

• 8 computers
• 1 sender and 7 receivers
• Windows XP Professional
• Microsoft .NET Framework 2.0

MCast
• Developed in C#
• Consists of 2 parts

• MCSend – server end
• MCReceive – client end

• Features:
• Sends strings of data over a LAN or WLAN

connection.
• Pseudo-NACK algorithm
• Measure time it takes for sender to send a

message
• Implements sockets
• Records data.

6

MCSend

• Important Functions:
• Initializes multicast connection with a

multicast address and multicast port
• User input
• Sends messages to the multicast group
• Receives NACK messages via thread

initialized within the program via port
65535

MCReceive

• Functions:
• Receives messages from the multicast

connection
• Sends a NACK message via a Unicast

connection between the sender and itself
if it does not properly receive a message

• Records results

7

NACK

• Negative acknowledgement
• Triggered when a client fails to receive

a packet instead of when a client
successfully receives a packet

• More efficient than ACK
• Other implementations include TRACK

and SuppACK

NACK: MCast
• pCount

• Counter within MCSend
• Separate counter within MCReceive
• Starts at 0 and increments every time a message is sent over

the connection
• NACK implementation

• pCount is appended to each message and sent to a client
• When a client first receives a message, its pCount is initialized

to the same number appended to the message received
• pCount then increments independently from the MCSend

pCount
• Once a client fails to receive a message over the network, the

program becomes out-of-synch with the multicast connection
and starts to NACK

8

Testing

• One test, Two networks
• Goal: To have all clients send NACK

messages to the server at the same time
• Measure: Number of “NACKing” clients

at pCount (time)
• Tested of LAN and WLAN networks

Assumptions

• No outside interference
• LAN and WLAN connections weren’t

mixed

9

The Test

• Sent a few test messages to make
sure everything is working properly

• Sent different lengths of messages
• Try overloading the connection by

sending a constant stream of
messages to the multicast address

LAN Results

• Could not break it
• No client sent a NACK message
• Longest run: 584 messages

10

WLAN Results
• Broke very quickly
• Unpredictable results

Number of Receivers Dropped Over Time

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Time (Packet #)

of

 R
ec

ei
ve

rs
 D

ro
pp

ed
 (N

AC
Ks

 S
en

t)

WIRELESS

WIRED

Conclusion

• While no new information about IP
multicasting over a WLAN connection
was found in the duration of this
project, we have reiterated that this
method is still unreliable due to its use
of UDP packets and error correction
methods which are either inappropriate
or not developed enough. However, IP
multicast still remains to be the
standard today.

11

Problems with MCast

• No way of retransmitting the lost packets
• Inefficient yet effective algorithms
• The only thing that one is able to read

from the logs is the number of NACKing
clients at the time

• Logs not formatted
• Bug where MCast prints out the wrong

Unicast IP address and port

Project Problems

• Confusion
• Not enough resources for a large scale test (N >

30)
• Not enough participation for a large scale test

due to lack of resources.
• Alternative methods were researched but not

used.

12

Looking Ahead

• Some things we could do in the future:
• Implement Classroom Presenter with different

types of multicast
• Fix MCast and develop it further as a

monitoring tool
• Launch MCast as an open source project
• Play around with WLAN settings for optimal

results

Project References

• Association of Computing Machines (ACM)
• IEEE
• Internet Engineering Task Force (IETF)
• Wikipedia
• Dr. Haibin Lu
• Dr. Wenjun Zeng

13

Acknowledgements

• Dr. Lu & Dr. Zeng
• The other REU participants
• Mizzou
• Payroll office

