Geocast Messaging for Wearable Smart Devices using Mesh Networking and Geographical Routing

Technical Presentation

+ Panacea's Cloud

- 1. Mesh Networks
 - a. Intro
 - b. Problem
- 2. Protocols
- 3. Simulation
- 4. Results
- 5. Future Work and Summary

Mesh Networks

Problems

- High failure rate
- Changing topology
- High bandwidth, low latency applications

Goal: High, sustained throughput over wide area

Solution: Geographic Routing Protocol

- 1. Mesh Networks
- 2. Protocols
 - a. HWMP
 - b. GPSR
- 3. Simulation
- 4. Results
- 5. Future Work and Summary

802.11s Standard

802.11s defines a standard for mesh networking protocols

- Hybrid Wireless Mesh Protocol (HWMP) is default routing mechanism
 - Maintains location tables of which routers can see each other
 - Large overhead to setup and discover the network
 - Repeats overhead when the network topology changes

Geographic Routing

Makes use of GPS coordinates of the destination and one-hop neighbors to find routing paths

- Stateless*
- Resistant to topology changes

Greedy Perimeter Stateless Routing (GPSR)

Greedy Forwarding

- Forwards packets to the node closest to the destination
- Requires state of one-hop neighbors
 - "Virtually Stateless"

Perimeter mode

- When no closer node is found, route the perimeter of the network

- 1. Mesh Networks
- 2. Protocols
- 3. Simulation
 - a. Mobility Scenes
 - b. Experiment Setup
 - c. Running simulation
- 4. Results

Mobility Scenes

Joplin, MO Disaster Area

10

Mobility Scenes Full Grid

Mobility Scenes

Straight Line

Building the Experiment

NS-3 Network Simulation Software

- Current standard for research applications
- Library support* for mesh protocols
- C++ Monster

```
for algorithm in 'GPSR' 'HWMP'; do
    for mobilityScene in 'full-grid' 'city-block' 'straight-line'; do
        for variation in 'scale' 'failure'; do
            for experiment in 1 2 3 4 5 6; do
                for trial in $(seq 1 $numTrials); do
                    ./waf --- run # Run the experiment
                    tshark -r $srcFile -q -z "io,stat,1,($tsharkFilter)" > "tshark-out.txt"
                    awk "..." # Compute mean, standard deviation
                    ls mp--* | xargs rm # Recycle, save a hard disk
                done
                awk '{a+=$1} END{print a/NR}' > 'average_io.txt'
                awk '{a+=$1} END{print a/NR}' > 'std-io.txt'
            done
        done
    done
done
```

11

12

13

14

15

- 1. Mesh Networks
- 2. Protocols
- 3. Simulation
- 4. Results
- 5. Future Work and Summary

GPSR — HWMP

Results

Mesh Points

OKR

Objectives

Improve Network Reliability 100%

Publish a paper on effects of Geographic Routing in a triage system 75% 75% -> 83%

Implement Geocast Messaging System 50%

- 1. Mesh Networks
- 2. Protocols
- 3. Simulation
- 4. Results
- 5. Future Work and Summary

Future Work: Hardware Prototype

- Language
 - Android
 - OpenFlow
 - RouterOS script

OpenWRT Router

- Hardware
 - Android devices (including glasses)
 - Battery draining and not powerful enough
 - Raspberry PI with GPS WIFI chip
 - Cheap OpenWRT router
 - Can get multiple, easy to setup
 - Best solution for Panacea's Cloud Mikrotik rugged router

Lessons Learned

Talk to the experts first

Automate now, save time later

Source control everything

Thank You!

Josiah Burchard

josiah@jburchard.com