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Abstract 

 
Unicast connections are a single connection between two computer hosts.  While they may work 
well for one-to-one communication or non-real-time applications, these connections may not be 
as efficient for one-to-many or many-to-many communications.  One alternative to this is IP 
Multicast, which allows efficient one-to-many and many-to-many communications.  The focus of 
our research was IP Multicast, which is mainly used for one-to-many connections.  One of IP 
multicast’s weaknesses is its lack of reliability due to its use of the User Datagram Protocol 
(UDP) for data transmission.  Our project focused on IP multicast in a wireless (802.11 b/g) 
local area network (WLAN) environment. We hoped to find more about reliably multicasting so 
to specifically address the problems with IP Multicast and possibly find the solution to such 
problems to ensure more efficient information exchange between computers using such 
programs as Classroom Presenter and ConferenceXP.  Using Microsoft’s .NET platform and the 
C# programming language, we wrote two programs; a server (sender) and a client (receiver), 
which uses IP Multicast to communicate simple strings of text with a pseudo-NACK 
implementation. Our test bed consisted of eight desktop computers which had the Microsoft 
Windows XP Professional operating system and Microsoft’s .NET Framework version 2 installed. 
We ran simple performance tests on both wired (LAN) and wireless (802.11b/g) connections. 
While our final results show that IP Multicast is an efficient method of transmitting data, it is 
still unreliable over wireless networks even in small scale settings. The problem with IP 
Multicast is the lack of feedback mechanism in the overall procedure. This creates reliability and 
scalability issues making it hard to ensure that data is properly transmitted from both ends. The 
use of extra protocols/algorithms is recommended when reliability is in need in an IP Multicast 
situation. 
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I. Introduction 
 
 Most network connections today are 
Unicast (one-to-one) connections.  They are 
basic and can be used for reliable data 
transmissions back and forth between the 
two connected nodes.  However, these 
connections are not appropriate for 
communications from one sender to multiple 
receivers (one-to-many) or for many senders 
to many receivers (many-to-many).  
Multicast connections, particularly IP 
Multicast connections, may be more 
appropriate.  IP Multicast connections may 
be particularly useful for one-to-many 
communications, as the sender need only 
transmit data packets once, and multicast-
enabled routers will copy the packets and 
send them to joined receivers. As the 
standard is implemented, there is no need for 
a sender to know who the receivers are, nor 
vice-versa.  Rather, senders and receivers 
need only know the multicast IP address 
(from the D block of IP addresses) and the 
port that will be used. 
 

Barring loss or corruption of the data, 
multicasting can more efficiently use 

network resources in many situations.  
These could be such things as discovering 
resources and routers, multimedia 
conferencing, serving video or other 
multimedia to many receivers, distributing 
the same files or data to many receivers at 
once, and many other situations where data 
is needed by many receivers in a short 
period of time.   

 
With the rise in popularity of 

wireless networks, including both IEEE 
802.11 (WiFi) and mobile (cellular), 
efficient use of network and host resources 
is important in order to both enable 
maximum battery life and the most use of 
network bandwidth/other resources available.  
Multicast has its uses in wireless networks 
as well, although as we will see later on, it 
also presents its own set of challenges. 

 
In this paper, we focus specifically 

one the use of IP Multicast for one-to-many 
communications in local area networks 
(LAN), both wired (Ethernet) and wireless 
(IEEE 802.11).  We examine IP Multicast in 
light of making transmissions both efficient 
and reliable. 
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Topics that are beyond the scope of 

this paper include multicast-related security, 
multicasting in ad hoc networks, many-to-
many multicast applications, and 
interdomain multicasting.  While the authors 
believe that these are engaging topics, to 
discuss them would detract from this paper. 
 
II. Troubles with IP Multicasting 
 

Though IP Multicasting can be an 
efficient way to quickly distribute data to 
many receiving hosts, it has one great 
weakness: it is unreliable. 

 
IP Multicast is unreliable due to its 

use of the User Datagram Protocol (UDP) 
[1], which unlike the Transmission Control 
Protocol (TCP) [2] used on the World Wide 
Web, lacks any sort of data reliability 
methods built in.  UDP is a best-effort 
protocol.  Native features of TCP like 
sequence numbering and ordering of packets, 
receiver acknowledgements of successful 
packet reception, and retransmission of lost 
packets are not included for UDP.  This 
reduces the required overhead for each 
packet, and also allows for IP Multicast’s 
feature of receivers and senders not needing 
to know one another, but may become an 
Achilles’ heel when packets are lost, 
delivered out of order, or corrupted, as the 
transport layer provides no assistance. 

 
Wireless networking adds the 

potential for even more problems.  Due to 
the use of radio waves for transmissions, 
these networks are susceptible to 
background noise and interference, which 
can cause packet corruption or loss.  
Furthermore, with a more limited channel 
capacity than wired networks, efficiency is 
important so as to maximize the utility of the 
network for all of its users.  Therefore, 
multicast is less robust in a wireless than a 

wired network, thus needing additional 
considerations. 

 
It is therefore up to programmers of   

multicasting applications to decide on their 
needs for reliability.  For those 
implementing applications where delays are 
not tolerable but some packet loss is, such as 
conferencing and other real-time uses, such 
as live streaming, some of the methods we 
will describe for adding reliability to 
multicast may not be useful, as 
retransmission cannot be an option; rather, 
said application would need to move on and 
wait for the next packet, ignoring the lost 
packet.  For others who can tolerate some 
delay, and for those whom reliable data 
delivery is more important, there are several 
different options and methods to implement 
to attempt to increase the reliability of IP 
Multicast.  Besides various proposed and 
implemented protocols (discussed later in 
the Related Works section of this paper), 
particularly for routing, there are 
application-layer solutions.  These include 
adding sequence numbers to packets, adding 
error checking and correction capacities, 
positive and/or negative feedback schemes, 
and retransmission schemes.  Such solutions 
come at a cost, however.  These costs may 
take the form of any or all of the following: 
increased packet sizes due to additional data 
sent per packet for increased reliability; 
more application overhead at the sender 
and/or receiver in order to process the extra 
information that may be sent with packets; 
additional delays due to feedback and 
retransmissions; and, most 
counterproductively of all, less scalability to 
large numbers of users.   

 
III. A Brief Discussion of Different 

Reliability Schemes 
 

We would like to take a little closer 
look at some of the previously-mentioned 
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application-layer reliability-enhancement 
schemes.  We will view them in terms of 
their costs versus their potential benefits. 

 
The first method a programmer 

might use to improve the reliability is some 
form of error detection/correction scheme.  
Whether using hash code checks or Forward 
Error Correction (FEC), these methods can 
be very useful in helping a receiver detect, 
and, in the case of FEC, correct, errors due 
to transmission (such as bit flips).  They 
might be appropriate for uses where 
receivers must receive data with no errors.  
If the program only uses error detection, 
then it must be paired with a packet 
sequence numbering method as well as a 
retransmission scheme.  Either way, though, 
these error-recovery schemes create high 
overheads for both the processing to create, 
decode, and compare the checking data as 
well as the additional packet overhead.  If 
small errors are permissible in the 
application (such as when sending simple 
text messages, or when such an error might 
distort a frame of video), we recommend 
that programmers pass in order to keep a 
much higher efficiency. 

 
Adding sequence numbering to 

packets is a simple, and often necessary, 
technique that the programmer can utilize.  
By merely appending the data with a short 
number at the sender, and then parsing it out 
on the receiver’s end, clients will be able to 
have a reference for other schemes, such as 
feedback and retransmission requests.  
Although extra considerations based upon 
the size of the number of packets to be sent 
may be needed, we recommend 
programmers add packet sequence numbers 
to their multicast applications if they need to 
improve reliability, though sequence 
numbers alone will do nothing to improve 
reliability. 

 

Feedback schemes, whether positive 
acknowledgements (ACKs) or negative 
acknowledgements (NACKs), can be useful 
for the sender to know whether packets are 
successfully being received.   

 
With an ACK-based setup, sequence 

numbering is theoretically not necessary, but 
still recommended.  While an immediate 
response to each packet received can be 
done without knowing a packet number, 
there is no way for the sender to know 
which packet a receiving is acknowledging, 
unless the sender waits after transmitting 
each packet.  Such a scheme is somewhat 
pointless, however, if the sender is not 
keeping track of all the different receivers, a 
difficult task not necessary to implement IP 
Multicast.  The sender needs to know which 
receivers have not received the packet so it 
can resend it to them.  However, there is 
always the problem of knowing who is in a 
receiving group, both before beginning as 
well as during the whole session, as 
receivers can drop membership from a 
multicast group without the sender’s 
knowledge.  Many different approaches to 
allow such discovery have been proposed [3, 
4, 5, 6].  On the flipside of this problem is 
another: how do receivers know where to 
send their acknowledgements?  If they use 
the multicast address, there is the risk of 
flooding the group with useless ACKs and 
blocking data from the sender.  If receivers 
are to respond to the IP address of the sender, 
they must know it beforehand, something 
not required for normal IP Multicasting.  If 
Source-Specific Multicast (SSM) is being 
used, however, receivers will already know 
this and therefore the application can easily 
put it to use.  (For more on SSM, see [7, 8]).  
However, there is another problem in having 
potentially a large group of receivers trying 
to acknowledge receipt: they will 
overwhelm the sender with their responses.  
Thus, the scheme does not scale well.  
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Although there are various proposals on 
ways to reduce the number of ACKs 
needing to be sent (see more in the “Related 
Works” section), we feel that due to both 
the need for the sender to know all receivers 
as well as the scaling issue, that ACK-based 
feedback schemes are not useful beyond 
small, controlled groups of receivers, such 
as in a closed LAN or a small business, 
where senders can easily check and maintain 
a record of all receivers. 

 
An alternative to the positive 

feedback mechanism is the negative 
acknowledgement (NACK) method.  NACK 
implementations generally require sequence 
numbering of packets, in order to allow 
receivers to keep track of the packets 
received.  In a most basic form, a receiver 
would keep track of the sequences numbers 
against an internal counter of its own, 
making sure it receives all packets.  If a 
packet is missed, the receiver sends a NACK 
to the sender, and the sender will retransmit.  
Programmers might wish to have the 
receivers include the sequence number of 
the expected packet in the NACK 
transmission in to ensure that the sender 
knows which packet needs to be resent.  
More robust applications would also have 
receivers watching for packets that are 
correctly delivered but are merely out of 
order (as is possible when using UDP).  As 
with the use of ACKs, a NACK scheme has 
the problem of how receivers will 
communicate back to the sender.  Again, 
sending to the multicast address could flood 
the group and interfere with the sender, 
causing further mayhem.  Likewise, sending 
directly to the sender requires knowledge of 
the IP address, just as with the ACK 
scenario.  With a few adaptations, a NACK 
scheme is more viable feedback mechanism 
to use for multicasting and may be quite 
helpful for reliability, worth its costs of 
implementation.  As discussed later in this 

paper, in our experiment we created what we 
dubbed a “pseudo-NACK”, a rudimentary, 
application-layer NACK scheme, without 
any retransmission methods built into the 
sender.   

 
Finally, there is the use of 

retransmission mechanisms by the send to 
help receivers recover lost or corrupted 
packets.  Without such a mechanism, the 
only of the other groups of schemes for 
reliability enhancement that would have any 
purpose is the error correction methods.  If a 
sender is not planning on doing 
retransmissions, there is little purpose for 
implementing a feedback mechanism.  
Assuming that some method has been used 
to inform the sender what packet(s) to 
resend, a programmer needs to only create a 
cache or store of previously transmitted 
packets, from which it can retrieve the 
needed packet.  The specific issue for the 
programmer is to consider how long to store 
a packet or alternatively, how many packets 
to store after sending.  At one end, the 
sender might only store the last packet sent.  
This is not likely to be very robust if there 
are several router “hops” between the sender 
and receiver(s).  The other end is of course 
to save everything transmitted during the 
session, which can put a tax on system 
memory (RAM, hard drives, or both 
depending on how the programmer decides 
to keep the store).  The optimal length/size 
of this store depends on the specific 
situation, so we recommend careful testing 
and adaptation as needed in order to find the 
best balance between reliability and 
efficiency.   

 
In light of these issues and trade-offs, 

we performed a small experiment in creating 
our own IP Multicasting program, dubbed 
“MCast”. 
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IV. Assumptions 
 

 We kept the following list of 
assumptions in mind while developing our 
test program for this study: 
 

1. There is no outside interference on 
the network. 

2. All servers and clients that are 
running the program will be on the 
same Local Area Network (LAN) or 
Wireless Local Area Network 
(WLAN). 

3. All servers and clients will never be 
on a mixture of LAN or WLAN 
connections. 

4. Network Address Translation (NAT) 
is not affecting the IP addresses of 
the servers or clients. 

 
V. The Test Bed 
 
 The test bed that was used in this 
study consisted of eight computers with the 
Microsoft Windows XP Professional 
operating system, Service Pack 2; the 
Microsoft .NET Framework 2.0; and the 
most recent version of our test program. 
 
VI. Our Attempts: “MCast” 
 
 The original goals of this study were 
to research multicasting and implement it 
into a program called “Classroom Presenter”. 
However, the second version of Classroom 
Presenter had already done so by the time 
we were in the design phase of our project. 
It was decided that in order for us to monitor 
a simple multicast connection, we had to 
write our own program and test it on a 
wireless network as well as a wired network. 
A sample program in one of our reference 
books, "Multicast Sockets: Practical Guide 
for Programmers" by David Makofske and 
Kevin Almeroth, is the base of MCast which 

we then built upon it in order to meet our 
needs.  
 

Since the emphasis of this research 
project was the efficiency and reliability of 
IP Multicasting, we had to design a program 
to measure both aspects in an experimental 
setting. We developed MCast using the C# 
language in Microsoft’s Visual Studio 2005. 
After researching numerous methods of 
multicasting over both wired and wireless 
networks, we found the simplest method to 
be “IP Multicasting”.  IP Multicasting 
consists of one or more servers sending 
information to a multicast address (an IP 
address within the range of 224.0.0.0 to 
239.255.255.255) [1, 2] and clients who are 
listening for data to be transmitted to them. 
Such connections are known as one-to-many 
or many-to-many connections depending on 
the number of active servers and clients 
interacting with the multicast address.   

 
The sender half of MCast (MCSend) 

was designed so that it would be able to 
send valid strings of text to the multicast 
address as well as the multicast port. The 
port number on the sender and receiving end 
was initialized to the same number to ensure 
the fastest delivery of each packet. Although 
this was a good idea at first, one problem did 
arise in which senders had a difficult time 
sending data to and listening on the same 
port. Sockets were used for the multicast 
connection due to its compatibility with IP 
multicast. Each string of data that is sent 
over the multicast address is appended with 
a sequence number (a simple counter we 
called the “pCount” initialized at zero) at the 
end which the receiver uses to compare with 
its own sequence. Whenever a message was 
sent, pCount would increment by one until 
the program was terminated by the user. If a 
receiver failed to properly receive a packet, 
then it would send a NACK message to the 
sender containing the IP address(es) of the 
receiver(s) which didn’t receive the packet. 
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Instead of having the receivers send an 
acknowledgement (ACK) message every 
time it successfully received a packet from 
the sender, it is much more efficient for the 
receiver to tell the sender when it doesn’t 
receive the packet as this is a less likely 
event to happen in most multicast 
connections. More efficient in this case 
would mean that less bandwidth is used 
since fewer receivers are communicating 
information back to the sender at one time. 
A timer was also implemented to measure 
the time it took MCSend to send a packet to 
the multicast address. We planned on 
measuring the time it took for MCSend to 
send a message and the receiving end to 
print it out, but was eventually thrown out 
because it didn’t fit in with our experiment. 
All of the information that is displayed on 
the console (messages sent, timestamps, etc) 
as well as the sequence number at the end of 
each message were saved to a text file 
named “mc_send_log.txt” which was later 
used for compiling and interpreting results. 
 

MCast’s receiving end (MCReceive) 
connected to the multicast address and 
listened for any data sent to it. Upon 
detecting any packets being transmitted to 
the multicast address via the sender program, 
it retrieves the data and prints it out to the 
screen. However, if a receiver does not 
properly receive a packet, then it will fall 
out of synch with the sender and begin 
sending NACK messages to the sender via a  
Unicast connection which is opened when 
the program starts until the user exits 
MCReceive. A socket was opened and used 
to create the connection just like MCSend 
did. When a receiver first joins the multicast 
group, its counter is automatically 
synchronized to the same number that the 
sending end is on. It does this by stripping 
off the sequence at the end of the message 
and stores it in the pCount variable while 
printing out the message as usual. The  

 
 
 
program contains one method to do both at 
the same time. This counter then increments 
independently with each packet received 
from the multicast group address, and 
compared to the sequence number attached 
to each additional packet received (which is 
stripped off each message and stored in a 
separate variable for the comparison). Since 
all of this is happening in a “while loop” (a 

Fig. 1 - MCSend in operation 

Fig. 2 - MCReceive in operation 
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block of code that repeats itself as long as 
the given conditions are true and breaks at 
the end of the cycle that it is on if said 
conditions become false).  The following 
pseudo code describes the method behind 
the counter: 

 
While the user isn’t done 
{ 
 //Some Code Here 
  

pCount = update pCount method; 
 

if(sender sequence != pCount) 
  Send NACK message; 
   Else 
  Print message; 
 
 Increment pCount; 

  
Raise a flag which make the update pCount 
method return pCount; 

} 
 
Update pCount method 
{ 
           If(flag is down) 

pCount = number appended to the  most 
recent packet received; 

           Else 
   pCount = pCount; 
} 
 

The only problems that arose from 
this implementation is if a receiver joins the 
multicast group and fails to receive the first 
packet that was sent to it, then no NACK 
message is sent and the program behaves 
normally as if nothing happened. Also, for 
reasons still unknown, MCReceive printed 
out the wrong address that it was supposed 
to. Instead of printing out the multicast 
address and port as intended, it prints out the 
Unicast connection IP address and hard 
coded port which were used to send the 
NACK messages to the sending side. As 
MCSend saves all of its information within a 
text file, MCReceive does the same with the 
only difference being the name of the file 
which it saves to (“mc_receive_log.txt”). 

 

In order for the program to work, the 
appropriate command line arguments need 
to be inserted after the program name 
(MCSend, MCReceive) or else an error will 
print out instead of the startup message 
instructing the user the proper input. These 
are the command line arguments which each 
end uses: 
  
For MCSend: A multicast address, multicast port and time to live 
(the amount of hops a packet travels through the network before it 
is discarded and ignored) need to be present. 
 
Ex. MCSend 232.5.6.7 1138 2 
  
For MCReceive: The same multicast address and multicast port 
need to be present as well as the IP address of the sending end 
which is used to transfer the NACK messages from the receiver to 
the sender. 
 
Ex. MCReceive 232.5.6.7 1138 192.168.1.9 

 
Due to time constraints and the focus 

of the project, we have decided not to 
implement the following list of features in 
our program (although it is very much 
capable of handling them): 
 

1. A way for MCSend to retransmit 
any packet that was not received 
any of the clients. 

2. A more precise measure of time 
between the packet being sent 
and it being received. Instead of 
the measure being in ticks, 
fractions of a second could be 
used instead. 

3. A Graphical User Interface (GUI) 
– This would make the program 
much more appealing to 
customers if we were developing 
this for commercial use. 

4. Better efficiency – the code used 
in the program does what it was 
intended to do. However, some 
parts can be redone to ensure 
maximum efficiency. 

5. Fix current bugs – though the 
bugs present in the current 
version of the program do not 
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interfere with the performance, it 
is something that will need to be 
addressed in future versions of 
the program. 

 
VII. The Known Bugs of MCast 
 

There are a few known problems 
within the program which we have 
addressed but haven’t fixed at this time. 
Perhaps in the near future, should this 
program be implemented in future project, 
these bugs can be dealt with as well as any 
unknown problems in the program. The 
following list describes the known bugs in 
MCast: 

 
a. There is no way for MCSend 

to retransmit data if a MCReceive 
client fails to properly receive a 
packet. 

b. MCSend prints out the wrong 
port which it receives the NACK 
message on. Instead of it print out 
“65535” like it should, it prints 
out the multicast port that the 
messages are being sent over. 

c. MCSend and MCReceive 
cannot be run on the same 
computer if there is more than one 
client connected to the multicast 
group. This causes the receiver 
(the one that is playing both roles) 
to send a NACK message within a 
few messages. 

 
VIII. Testing on the Network 
 
 The testing phase for the project only 
had one test with multiple runs for a variety 
in data rather than multiple tests with 
multiple runs. We felt that a real life test 
over a real network would be the best way to 
monitor our program’s performance. Simple 
stress tests were performed over the network 
to ensure the program was working correctly 

and there were no problems with it which 
would create inaccuracies with the results. 
One of the test bed computers was 
designated as the sender (server) while the 
other seven were assigned the role of 
receiver (client).  
 

The original plan was to have the 
sender also be a receiver, but the idea was 
later discarded due to difficulties in which 
the sender was having trouble relaying the 
messages to itself via the same port it was 
communicating on. During the initial testing 
phase, a fraction of the total number of the 
computers was used for each run (starting 
with two receivers then adding two more for 
a total of four then adding in the remaining 
clients). It was then decided to just use all of 
the computers in each run instead of starting 
out with a few and add more in because 
there was no difference in the time it took 
for the transfer of packets from the sender to 
the receiver. 

 
The goal of our test was to see how 

long it took for all receivers to send NACK 
messages to the sender at once. If a receiver 
became out of synch with the sender then it 
would send the NACK message to the 
sender, and the packet number of that packet 
was recorded to tell how many receivers 
were not receiving messages at that time. 
When all seven of the receivers sent a 
NACK message to the sender then the test 
was terminated and reset for the next run. 
One of the reasons why we implemented 
such a test was because we lacked the 
necessary resources for a large (N > 30) 
scale study. While we could have used 
additional computers outside the test bed, 
we also lacked the necessary amount of 
participation to do so. A more detailed 
procedure is given later in this section 
should anyone wish to do this experiment 
themselves. 
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Both wired (LAN) and wireless 
(WLAN) networks were used during testing 
so we could compare the difference in 
performance between the two. Our main 
concern, however, was the results of the 
wireless network since we were seeking to 
create an environment similar to that of a 
classroom setting using Classroom Presenter. 
An arbitrary number of runs of the test were 
first performed on the wired network 
followed by the wireless network. The only 
data which we were interested in was that 
from the MCSend program since it contains 
how many NACK messages are being sent 
to it and the packet number it was on at the 
time. The results from each run were 
compiled into a single spreadsheet and 
sorted by the pCount then the amount of 
NACK messages which were present at the 
time. Once all of the testing was complete 
then all of the results were compiled into a 
master spreadsheet which contains 
information from the wired network runs as 
well as the wireless network runs. 
  
The following is a more detailed version of the 
procedure we used for the test: 
 
 Before any of the testing began, we 
made sure that each computer had the latest 
version of the MCast program (previous 
implementations aren’t compatible with the most 
recent version). Then all of the computers were 
either switched to the wired or wireless network 
in the room depending on which type was being 
tested at the time. The Command Console was 
opened on all terminals and awaited for its 
respected side of the program (MCSend or 
MCReceive) to be started with all the right 
command line arguments (IP addresses, ports, 
time to live, etc).  
 
 First, the sending end opened up the 
multicast connection and was ready to send 
messages to the multicast address regardless 
whether or not any receivers were listening in 
on the connection. Then all seven receivers 
connected to the multicast address and waited 

until the sender sent a message to them via the 
multicast connection. A couple of packets were 
sent over the network in order to tell whether or 
not the program was working correctly. Then 
messages of different sizes (measured in bytes) 
ranging from the smallest size available (a blank 
message) to the largest size (255 characters) 
allowed across the connection. If no receivers 
were giving into the stress then a constant 
stream of messages were then sent over the 
network until all seven receivers were sending 
NACK messages at the same time. The sending 
end recorded all of the messages it sent (with the 
sequence number still attached to it) as well as 
all of the NACK messages it received from the 
receiving members of the multicast group via the 
thread the sender is listening to. The results 
from each additional run were appended at the 
end of the file with a time stamp to separate one 
run from the other. The receiving end results 
were only used to ensure continuity between 
runs. 
 
IX. Results and Observations 
 
 After a sufficient amount of data was 
collected and compiled, it was put into a 
scatter plot in order to show the differences 
between the program’s performance on the 
wireless network versus the performance we 
observed over the wired network. The main 
reason why the wired network was included 
in this study was because we needed a 
reliable medium to compare the wireless 
network to (which is inherently unreliable 
and unpredictable). The final results were 
put into a scatter plot because there was no 
way to average the amount of receivers 
sending NACK messages to the sender at 
the time (measured by pCount). A range of 
results was thrown out because it was either 
constant or redundant data. The amount of 
messages sent during the wired connection 
runs greatly outnumbered those sent during 
the wireless connection runs. Once we 
reached a certain point during the wired 
connection test in which it was inevitable 
that no receiver would be sending a NACK 
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anytime soon, the test was terminated and 
recorded it as a perfect run. In order for the 
comparison to be even, we also took out all 
of the data points from X = 101 and above 
from both sides.  
 
 According to the scatter plot (Figure 
X), the runs done on the wired network 
show a perfect performance every single 
time (i.e. none of the receivers were dropped 
during the entire run). This shows that the 
wired connection was reliable for the 
number of users it was handling during the 
testing phase. While the wired connection 
results show a stable trend, the wireless 
connection results show something 
completely different. Looking back at the 
scatter plot, there are data points in a much 
greater variety of places which show that the 
connection itself was unpredictable in the 
sense that it was not known when a receiver 
would send a NACK message to the sender.  
 
 How can this be applied to IP 
multicasting? The advantage of IP 
multicasting over a wireless network is that 
it takes up less bandwidth of the connection. 
Initially this type of connection will take up 
more bandwidth than a Unicast connection, 
but each additional member of the multicast 
group will take up less bandwidth than 
another Unicast connection. Since IP 
multicasting currently has scalability issues 
in which the reliability of the transferred 
data diminishes as the number of members 
in multicast group grows. Implementing this 
type of multicast connection over a wireless 
network only compounds the reliability 
issues the connection already has from the 
beginning. What makes this method so 
appealing is its use of UDP packets where 
each packet can travel independently of each 
other unlike TCP packets which require a 
more direct approach with the transmission 
of the information. One of the reasons why 
IP multicasting is so unreliable is because it  

 

 
 
 
uses UDP packets which are also unreliable 
in nature. [1, 2] While there are more 
methods of multicasting that exist, this one 
is the easiest to set up and monitor. 
 

Currently the second version of 
Classroom Presenter makes use of IP 
multicasting. Even though this program has 
more effective and efficient algorithms than 
MCast, the scalability issues still pose a 
threat to the program’s performance due to 
the wireless multicast connection it mainly 
utilizes. 
 
X. Related Work 
 

Besides the “simpler” methods for 
creating reliable multicasts discussed earlier, 
various other methods have been proposed 
and suggested.  We will briefly examine a 
few of them. 
 
 Of the many approaches we came 
along in our research, there was a common 
theme in many of them: some form of 
additional grouping.  The first of these 
approaches is the grouping with leaders 
approach.  In it, receivers are divided into 
different groups, and assign them leaders.  
Members within these subgroups 
communicate with the leader, and in turn if 
retransmission is required, the leader 
communicates for the whole group to the 
sender [9].  A slight alteration on this 

Fig. 3 – Final test results 
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approach is to have the leader maintain a 
cache and to have it do the resending instead 
of the original sender [3]. While a leader-
based approach was found to be more 
effective for preventing problems within a 
controlled wireless environment [10], such 
solutions require extra work in software in 
order to assign leaders and have them 
maintain information on their peers inside 
their subgroup. 
 
 Another similar scheme is the tree-
based ACK approach, where again receivers 
are grouped, except there is a more 
hierarchical structure, and nodes only report 
up to the next level of the hierarchy [11].  
As was pointed out, this tree method faces 
problems if the members within it change—
it is not very dynamic.  Furthermore, special 
protocols are required to manage these trees 
for different multicast sessions, as was 
pointed out by the authors. 
 
 Grouping is also popular for methods 
of data rate and congestion control.  For rate 
control, receivers are grouped according to 
their maximum possible throughput rates, in 
order to allow the sender to cater more 
specifically to their network capabilities 
without overwhelming any buffers [12, 5, 13, 
and 14].  While this might be effective, to 
implement such a procedure requires a great 
deal of planning and testing to ensure that it 
works properly, or the programmer may 
only aggravate matters for the worse. 
 
 There is one final use for grouping 
receivers together: to keep from 
overwhelming the sender [6].  Such a set up 
might employ multiple multicast addresses 
for the different groups, and further 
hierarchies underneath.  Our comments, 
again, are to plan and test carefully. 
 
 We also came across an interesting 
approach that did not involve grouping 

receivers together in any way.  Rather, it 
was a suggestion specifically meant for 
wireless multicasting situations [15].  The 
authors proposed using two channels for 
wireless multicast—one for messages, and 
one for sending busy tones to notify that the 
message channel is not clear for sending.  
There are two flaws to this approach: first, it 
requires tying up a channel that could be 
used for transmitting data instead of sending 
a busy signal; and second, this approach, as 
the authors indicated themselves, is not 
really compatible with the IEEE 802.11 
standards.  We feel that programmers might 
be better advised to pursue reliability via 
other methods. 
 
XI. Conclusion 
 

While IP multicast remains to be the 
most popular method of multicasting on the 
Internet today, much improvement is needed 
to ensure maximum efficiency and 
reliability for data transfer, security, and 
other such aspects of networking. Through 
testing and results, we have concluded that 
IP multicast can be reliable over a LAN 
connection for a small scale (N < 30) 
commercial setting. However, it still 
remains unreliable and unpredictable over a 
WLAN connection for the same amount of 
clients in a multicast group. However, it is 
safe to say that it is more efficient than 
Unicast connections in the same 
environment. This concept has been 
reiterated throughout this paper and still 
holds true to today’s standards. Different 
methods still need to be researched and 
developed before multicasting technology is 
perfected to a point where minimal data loss 
is present and the proper error correcting 
algorithms are in place. 
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