
 1

Efficient reliable IP multicasting

Michael Henderson, University of Missouri – Columbia, Adam Ryan, Truman State
University, Dr. Haibin Lu, University of Missouri – Columbia, Dr. Wenjun Zeng,
University of Missouri - Columbia

Abstract

Unicast connections are a single connection between two computer hosts. While they may work
well for one-to-one communication or non-real-time applications, these connections may not be
as efficient for one-to-many or many-to-many communications. One alternative to this is IP
Multicast, which allows efficient one-to-many and many-to-many communications. The focus of
our research was IP Multicast, which is mainly used for one-to-many connections. One of IP
multicast’s weaknesses is its lack of reliability due to its use of the User Datagram Protocol
(UDP) for data transmission. Our project focused on IP multicast in a wireless (802.11 b/g)
local area network (WLAN) environment. We hoped to find more about reliably multicasting so
to specifically address the problems with IP Multicast and possibly find the solution to such
problems to ensure more efficient information exchange between computers using such
programs as Classroom Presenter and ConferenceXP. Using Microsoft’s .NET platform and the
C# programming language, we wrote two programs; a server (sender) and a client (receiver),
which uses IP Multicast to communicate simple strings of text with a pseudo-NACK
implementation. Our test bed consisted of eight desktop computers which had the Microsoft
Windows XP Professional operating system and Microsoft’s .NET Framework version 2 installed.
We ran simple performance tests on both wired (LAN) and wireless (802.11b/g) connections.
While our final results show that IP Multicast is an efficient method of transmitting data, it is
still unreliable over wireless networks even in small scale settings. The problem with IP
Multicast is the lack of feedback mechanism in the overall procedure. This creates reliability and
scalability issues making it hard to ensure that data is properly transmitted from both ends. The
use of extra protocols/algorithms is recommended when reliability is in need in an IP Multicast
situation.

 2

Table of Contents

Abstract..1
Introduction..2
Troubles with IP Multicasting...3
A Brief Discussion of Different Reliability Schemes..3
Assumptions...6
The Test Bed..6
Our Attempts: “MCast”...6
The Known Bugs of MCast...9
Testing on the Network..9
Results and Observations...10
Related Work...11
Conclusion...11
Acknowledgements..12
References..12

I. Introduction

 Most network connections today are
Unicast (one-to-one) connections. They are
basic and can be used for reliable data
transmissions back and forth between the
two connected nodes. However, these
connections are not appropriate for
communications from one sender to multiple
receivers (one-to-many) or for many senders
to many receivers (many-to-many).
Multicast connections, particularly IP
Multicast connections, may be more
appropriate. IP Multicast connections may
be particularly useful for one-to-many
communications, as the sender need only
transmit data packets once, and multicast-
enabled routers will copy the packets and
send them to joined receivers. As the
standard is implemented, there is no need for
a sender to know who the receivers are, nor
vice-versa. Rather, senders and receivers
need only know the multicast IP address
(from the D block of IP addresses) and the
port that will be used.

Barring loss or corruption of the data,
multicasting can more efficiently use

network resources in many situations.
These could be such things as discovering
resources and routers, multimedia
conferencing, serving video or other
multimedia to many receivers, distributing
the same files or data to many receivers at
once, and many other situations where data
is needed by many receivers in a short
period of time.

With the rise in popularity of

wireless networks, including both IEEE
802.11 (WiFi) and mobile (cellular),
efficient use of network and host resources
is important in order to both enable
maximum battery life and the most use of
network bandwidth/other resources available.
Multicast has its uses in wireless networks
as well, although as we will see later on, it
also presents its own set of challenges.

In this paper, we focus specifically

one the use of IP Multicast for one-to-many
communications in local area networks
(LAN), both wired (Ethernet) and wireless
(IEEE 802.11). We examine IP Multicast in
light of making transmissions both efficient
and reliable.

 3

Topics that are beyond the scope of

this paper include multicast-related security,
multicasting in ad hoc networks, many-to-
many multicast applications, and
interdomain multicasting. While the authors
believe that these are engaging topics, to
discuss them would detract from this paper.

II. Troubles with IP Multicasting

Though IP Multicasting can be an
efficient way to quickly distribute data to
many receiving hosts, it has one great
weakness: it is unreliable.

IP Multicast is unreliable due to its

use of the User Datagram Protocol (UDP)
[1], which unlike the Transmission Control
Protocol (TCP) [2] used on the World Wide
Web, lacks any sort of data reliability
methods built in. UDP is a best-effort
protocol. Native features of TCP like
sequence numbering and ordering of packets,
receiver acknowledgements of successful
packet reception, and retransmission of lost
packets are not included for UDP. This
reduces the required overhead for each
packet, and also allows for IP Multicast’s
feature of receivers and senders not needing
to know one another, but may become an
Achilles’ heel when packets are lost,
delivered out of order, or corrupted, as the
transport layer provides no assistance.

Wireless networking adds the

potential for even more problems. Due to
the use of radio waves for transmissions,
these networks are susceptible to
background noise and interference, which
can cause packet corruption or loss.
Furthermore, with a more limited channel
capacity than wired networks, efficiency is
important so as to maximize the utility of the
network for all of its users. Therefore,
multicast is less robust in a wireless than a

wired network, thus needing additional
considerations.

It is therefore up to programmers of

multicasting applications to decide on their
needs for reliability. For those
implementing applications where delays are
not tolerable but some packet loss is, such as
conferencing and other real-time uses, such
as live streaming, some of the methods we
will describe for adding reliability to
multicast may not be useful, as
retransmission cannot be an option; rather,
said application would need to move on and
wait for the next packet, ignoring the lost
packet. For others who can tolerate some
delay, and for those whom reliable data
delivery is more important, there are several
different options and methods to implement
to attempt to increase the reliability of IP
Multicast. Besides various proposed and
implemented protocols (discussed later in
the Related Works section of this paper),
particularly for routing, there are
application-layer solutions. These include
adding sequence numbers to packets, adding
error checking and correction capacities,
positive and/or negative feedback schemes,
and retransmission schemes. Such solutions
come at a cost, however. These costs may
take the form of any or all of the following:
increased packet sizes due to additional data
sent per packet for increased reliability;
more application overhead at the sender
and/or receiver in order to process the extra
information that may be sent with packets;
additional delays due to feedback and
retransmissions; and, most
counterproductively of all, less scalability to
large numbers of users.

III. A Brief Discussion of Different

Reliability Schemes

We would like to take a little closer
look at some of the previously-mentioned

 4

application-layer reliability-enhancement
schemes. We will view them in terms of
their costs versus their potential benefits.

The first method a programmer

might use to improve the reliability is some
form of error detection/correction scheme.
Whether using hash code checks or Forward
Error Correction (FEC), these methods can
be very useful in helping a receiver detect,
and, in the case of FEC, correct, errors due
to transmission (such as bit flips). They
might be appropriate for uses where
receivers must receive data with no errors.
If the program only uses error detection,
then it must be paired with a packet
sequence numbering method as well as a
retransmission scheme. Either way, though,
these error-recovery schemes create high
overheads for both the processing to create,
decode, and compare the checking data as
well as the additional packet overhead. If
small errors are permissible in the
application (such as when sending simple
text messages, or when such an error might
distort a frame of video), we recommend
that programmers pass in order to keep a
much higher efficiency.

Adding sequence numbering to

packets is a simple, and often necessary,
technique that the programmer can utilize.
By merely appending the data with a short
number at the sender, and then parsing it out
on the receiver’s end, clients will be able to
have a reference for other schemes, such as
feedback and retransmission requests.
Although extra considerations based upon
the size of the number of packets to be sent
may be needed, we recommend
programmers add packet sequence numbers
to their multicast applications if they need to
improve reliability, though sequence
numbers alone will do nothing to improve
reliability.

Feedback schemes, whether positive
acknowledgements (ACKs) or negative
acknowledgements (NACKs), can be useful
for the sender to know whether packets are
successfully being received.

With an ACK-based setup, sequence

numbering is theoretically not necessary, but
still recommended. While an immediate
response to each packet received can be
done without knowing a packet number,
there is no way for the sender to know
which packet a receiving is acknowledging,
unless the sender waits after transmitting
each packet. Such a scheme is somewhat
pointless, however, if the sender is not
keeping track of all the different receivers, a
difficult task not necessary to implement IP
Multicast. The sender needs to know which
receivers have not received the packet so it
can resend it to them. However, there is
always the problem of knowing who is in a
receiving group, both before beginning as
well as during the whole session, as
receivers can drop membership from a
multicast group without the sender’s
knowledge. Many different approaches to
allow such discovery have been proposed [3,
4, 5, 6]. On the flipside of this problem is
another: how do receivers know where to
send their acknowledgements? If they use
the multicast address, there is the risk of
flooding the group with useless ACKs and
blocking data from the sender. If receivers
are to respond to the IP address of the sender,
they must know it beforehand, something
not required for normal IP Multicasting. If
Source-Specific Multicast (SSM) is being
used, however, receivers will already know
this and therefore the application can easily
put it to use. (For more on SSM, see [7, 8]).
However, there is another problem in having
potentially a large group of receivers trying
to acknowledge receipt: they will
overwhelm the sender with their responses.
Thus, the scheme does not scale well.

 5

Although there are various proposals on
ways to reduce the number of ACKs
needing to be sent (see more in the “Related
Works” section), we feel that due to both
the need for the sender to know all receivers
as well as the scaling issue, that ACK-based
feedback schemes are not useful beyond
small, controlled groups of receivers, such
as in a closed LAN or a small business,
where senders can easily check and maintain
a record of all receivers.

An alternative to the positive

feedback mechanism is the negative
acknowledgement (NACK) method. NACK
implementations generally require sequence
numbering of packets, in order to allow
receivers to keep track of the packets
received. In a most basic form, a receiver
would keep track of the sequences numbers
against an internal counter of its own,
making sure it receives all packets. If a
packet is missed, the receiver sends a NACK
to the sender, and the sender will retransmit.
Programmers might wish to have the
receivers include the sequence number of
the expected packet in the NACK
transmission in to ensure that the sender
knows which packet needs to be resent.
More robust applications would also have
receivers watching for packets that are
correctly delivered but are merely out of
order (as is possible when using UDP). As
with the use of ACKs, a NACK scheme has
the problem of how receivers will
communicate back to the sender. Again,
sending to the multicast address could flood
the group and interfere with the sender,
causing further mayhem. Likewise, sending
directly to the sender requires knowledge of
the IP address, just as with the ACK
scenario. With a few adaptations, a NACK
scheme is more viable feedback mechanism
to use for multicasting and may be quite
helpful for reliability, worth its costs of
implementation. As discussed later in this

paper, in our experiment we created what we
dubbed a “pseudo-NACK”, a rudimentary,
application-layer NACK scheme, without
any retransmission methods built into the
sender.

Finally, there is the use of

retransmission mechanisms by the send to
help receivers recover lost or corrupted
packets. Without such a mechanism, the
only of the other groups of schemes for
reliability enhancement that would have any
purpose is the error correction methods. If a
sender is not planning on doing
retransmissions, there is little purpose for
implementing a feedback mechanism.
Assuming that some method has been used
to inform the sender what packet(s) to
resend, a programmer needs to only create a
cache or store of previously transmitted
packets, from which it can retrieve the
needed packet. The specific issue for the
programmer is to consider how long to store
a packet or alternatively, how many packets
to store after sending. At one end, the
sender might only store the last packet sent.
This is not likely to be very robust if there
are several router “hops” between the sender
and receiver(s). The other end is of course
to save everything transmitted during the
session, which can put a tax on system
memory (RAM, hard drives, or both
depending on how the programmer decides
to keep the store). The optimal length/size
of this store depends on the specific
situation, so we recommend careful testing
and adaptation as needed in order to find the
best balance between reliability and
efficiency.

In light of these issues and trade-offs,

we performed a small experiment in creating
our own IP Multicasting program, dubbed
“MCast”.

 6

IV. Assumptions

 We kept the following list of
assumptions in mind while developing our
test program for this study:

1. There is no outside interference on
the network.

2. All servers and clients that are
running the program will be on the
same Local Area Network (LAN) or
Wireless Local Area Network
(WLAN).

3. All servers and clients will never be
on a mixture of LAN or WLAN
connections.

4. Network Address Translation (NAT)
is not affecting the IP addresses of
the servers or clients.

V. The Test Bed

 The test bed that was used in this
study consisted of eight computers with the
Microsoft Windows XP Professional
operating system, Service Pack 2; the
Microsoft .NET Framework 2.0; and the
most recent version of our test program.

VI. Our Attempts: “MCast”

 The original goals of this study were
to research multicasting and implement it
into a program called “Classroom Presenter”.
However, the second version of Classroom
Presenter had already done so by the time
we were in the design phase of our project.
It was decided that in order for us to monitor
a simple multicast connection, we had to
write our own program and test it on a
wireless network as well as a wired network.
A sample program in one of our reference
books, "Multicast Sockets: Practical Guide
for Programmers" by David Makofske and
Kevin Almeroth, is the base of MCast which

we then built upon it in order to meet our
needs.

Since the emphasis of this research
project was the efficiency and reliability of
IP Multicasting, we had to design a program
to measure both aspects in an experimental
setting. We developed MCast using the C#
language in Microsoft’s Visual Studio 2005.
After researching numerous methods of
multicasting over both wired and wireless
networks, we found the simplest method to
be “IP Multicasting”. IP Multicasting
consists of one or more servers sending
information to a multicast address (an IP
address within the range of 224.0.0.0 to
239.255.255.255) [1, 2] and clients who are
listening for data to be transmitted to them.
Such connections are known as one-to-many
or many-to-many connections depending on
the number of active servers and clients
interacting with the multicast address.

The sender half of MCast (MCSend)

was designed so that it would be able to
send valid strings of text to the multicast
address as well as the multicast port. The
port number on the sender and receiving end
was initialized to the same number to ensure
the fastest delivery of each packet. Although
this was a good idea at first, one problem did
arise in which senders had a difficult time
sending data to and listening on the same
port. Sockets were used for the multicast
connection due to its compatibility with IP
multicast. Each string of data that is sent
over the multicast address is appended with
a sequence number (a simple counter we
called the “pCount” initialized at zero) at the
end which the receiver uses to compare with
its own sequence. Whenever a message was
sent, pCount would increment by one until
the program was terminated by the user. If a
receiver failed to properly receive a packet,
then it would send a NACK message to the
sender containing the IP address(es) of the
receiver(s) which didn’t receive the packet.

 7

Instead of having the receivers send an
acknowledgement (ACK) message every
time it successfully received a packet from
the sender, it is much more efficient for the
receiver to tell the sender when it doesn’t
receive the packet as this is a less likely
event to happen in most multicast
connections. More efficient in this case
would mean that less bandwidth is used
since fewer receivers are communicating
information back to the sender at one time.
A timer was also implemented to measure
the time it took MCSend to send a packet to
the multicast address. We planned on
measuring the time it took for MCSend to
send a message and the receiving end to
print it out, but was eventually thrown out
because it didn’t fit in with our experiment.
All of the information that is displayed on
the console (messages sent, timestamps, etc)
as well as the sequence number at the end of
each message were saved to a text file
named “mc_send_log.txt” which was later
used for compiling and interpreting results.

MCast’s receiving end (MCReceive)
connected to the multicast address and
listened for any data sent to it. Upon
detecting any packets being transmitted to
the multicast address via the sender program,
it retrieves the data and prints it out to the
screen. However, if a receiver does not
properly receive a packet, then it will fall
out of synch with the sender and begin
sending NACK messages to the sender via a
Unicast connection which is opened when
the program starts until the user exits
MCReceive. A socket was opened and used
to create the connection just like MCSend
did. When a receiver first joins the multicast
group, its counter is automatically
synchronized to the same number that the
sending end is on. It does this by stripping
off the sequence at the end of the message
and stores it in the pCount variable while
printing out the message as usual. The

program contains one method to do both at
the same time. This counter then increments
independently with each packet received
from the multicast group address, and
compared to the sequence number attached
to each additional packet received (which is
stripped off each message and stored in a
separate variable for the comparison). Since
all of this is happening in a “while loop” (a

Fig. 1 - MCSend in operation

Fig. 2 - MCReceive in operation

 8

block of code that repeats itself as long as
the given conditions are true and breaks at
the end of the cycle that it is on if said
conditions become false). The following
pseudo code describes the method behind
the counter:

While the user isn’t done
{
 //Some Code Here

pCount = update pCount method;

if(sender sequence != pCount)
 Send NACK message;
 Else
 Print message;

 Increment pCount;

Raise a flag which make the update pCount
method return pCount;

}

Update pCount method
{
 If(flag is down)

pCount = number appended to the most
recent packet received;

 Else
 pCount = pCount;
}

The only problems that arose from
this implementation is if a receiver joins the
multicast group and fails to receive the first
packet that was sent to it, then no NACK
message is sent and the program behaves
normally as if nothing happened. Also, for
reasons still unknown, MCReceive printed
out the wrong address that it was supposed
to. Instead of printing out the multicast
address and port as intended, it prints out the
Unicast connection IP address and hard
coded port which were used to send the
NACK messages to the sending side. As
MCSend saves all of its information within a
text file, MCReceive does the same with the
only difference being the name of the file
which it saves to (“mc_receive_log.txt”).

In order for the program to work, the
appropriate command line arguments need
to be inserted after the program name
(MCSend, MCReceive) or else an error will
print out instead of the startup message
instructing the user the proper input. These
are the command line arguments which each
end uses:

For MCSend: A multicast address, multicast port and time to live
(the amount of hops a packet travels through the network before it
is discarded and ignored) need to be present.

Ex. MCSend 232.5.6.7 1138 2

For MCReceive: The same multicast address and multicast port
need to be present as well as the IP address of the sending end
which is used to transfer the NACK messages from the receiver to
the sender.

Ex. MCReceive 232.5.6.7 1138 192.168.1.9

Due to time constraints and the focus

of the project, we have decided not to
implement the following list of features in
our program (although it is very much
capable of handling them):

1. A way for MCSend to retransmit
any packet that was not received
any of the clients.

2. A more precise measure of time
between the packet being sent
and it being received. Instead of
the measure being in ticks,
fractions of a second could be
used instead.

3. A Graphical User Interface (GUI)
– This would make the program
much more appealing to
customers if we were developing
this for commercial use.

4. Better efficiency – the code used
in the program does what it was
intended to do. However, some
parts can be redone to ensure
maximum efficiency.

5. Fix current bugs – though the
bugs present in the current
version of the program do not

 9

interfere with the performance, it
is something that will need to be
addressed in future versions of
the program.

VII. The Known Bugs of MCast

There are a few known problems
within the program which we have
addressed but haven’t fixed at this time.
Perhaps in the near future, should this
program be implemented in future project,
these bugs can be dealt with as well as any
unknown problems in the program. The
following list describes the known bugs in
MCast:

a. There is no way for MCSend

to retransmit data if a MCReceive
client fails to properly receive a
packet.

b. MCSend prints out the wrong
port which it receives the NACK
message on. Instead of it print out
“65535” like it should, it prints
out the multicast port that the
messages are being sent over.

c. MCSend and MCReceive
cannot be run on the same
computer if there is more than one
client connected to the multicast
group. This causes the receiver
(the one that is playing both roles)
to send a NACK message within a
few messages.

VIII. Testing on the Network

 The testing phase for the project only
had one test with multiple runs for a variety
in data rather than multiple tests with
multiple runs. We felt that a real life test
over a real network would be the best way to
monitor our program’s performance. Simple
stress tests were performed over the network
to ensure the program was working correctly

and there were no problems with it which
would create inaccuracies with the results.
One of the test bed computers was
designated as the sender (server) while the
other seven were assigned the role of
receiver (client).

The original plan was to have the
sender also be a receiver, but the idea was
later discarded due to difficulties in which
the sender was having trouble relaying the
messages to itself via the same port it was
communicating on. During the initial testing
phase, a fraction of the total number of the
computers was used for each run (starting
with two receivers then adding two more for
a total of four then adding in the remaining
clients). It was then decided to just use all of
the computers in each run instead of starting
out with a few and add more in because
there was no difference in the time it took
for the transfer of packets from the sender to
the receiver.

The goal of our test was to see how

long it took for all receivers to send NACK
messages to the sender at once. If a receiver
became out of synch with the sender then it
would send the NACK message to the
sender, and the packet number of that packet
was recorded to tell how many receivers
were not receiving messages at that time.
When all seven of the receivers sent a
NACK message to the sender then the test
was terminated and reset for the next run.
One of the reasons why we implemented
such a test was because we lacked the
necessary resources for a large (N > 30)
scale study. While we could have used
additional computers outside the test bed,
we also lacked the necessary amount of
participation to do so. A more detailed
procedure is given later in this section
should anyone wish to do this experiment
themselves.

 10

Both wired (LAN) and wireless
(WLAN) networks were used during testing
so we could compare the difference in
performance between the two. Our main
concern, however, was the results of the
wireless network since we were seeking to
create an environment similar to that of a
classroom setting using Classroom Presenter.
An arbitrary number of runs of the test were
first performed on the wired network
followed by the wireless network. The only
data which we were interested in was that
from the MCSend program since it contains
how many NACK messages are being sent
to it and the packet number it was on at the
time. The results from each run were
compiled into a single spreadsheet and
sorted by the pCount then the amount of
NACK messages which were present at the
time. Once all of the testing was complete
then all of the results were compiled into a
master spreadsheet which contains
information from the wired network runs as
well as the wireless network runs.

The following is a more detailed version of the
procedure we used for the test:

 Before any of the testing began, we
made sure that each computer had the latest
version of the MCast program (previous
implementations aren’t compatible with the most
recent version). Then all of the computers were
either switched to the wired or wireless network
in the room depending on which type was being
tested at the time. The Command Console was
opened on all terminals and awaited for its
respected side of the program (MCSend or
MCReceive) to be started with all the right
command line arguments (IP addresses, ports,
time to live, etc).

 First, the sending end opened up the
multicast connection and was ready to send
messages to the multicast address regardless
whether or not any receivers were listening in
on the connection. Then all seven receivers
connected to the multicast address and waited

until the sender sent a message to them via the
multicast connection. A couple of packets were
sent over the network in order to tell whether or
not the program was working correctly. Then
messages of different sizes (measured in bytes)
ranging from the smallest size available (a blank
message) to the largest size (255 characters)
allowed across the connection. If no receivers
were giving into the stress then a constant
stream of messages were then sent over the
network until all seven receivers were sending
NACK messages at the same time. The sending
end recorded all of the messages it sent (with the
sequence number still attached to it) as well as
all of the NACK messages it received from the
receiving members of the multicast group via the
thread the sender is listening to. The results
from each additional run were appended at the
end of the file with a time stamp to separate one
run from the other. The receiving end results
were only used to ensure continuity between
runs.

IX. Results and Observations

 After a sufficient amount of data was
collected and compiled, it was put into a
scatter plot in order to show the differences
between the program’s performance on the
wireless network versus the performance we
observed over the wired network. The main
reason why the wired network was included
in this study was because we needed a
reliable medium to compare the wireless
network to (which is inherently unreliable
and unpredictable). The final results were
put into a scatter plot because there was no
way to average the amount of receivers
sending NACK messages to the sender at
the time (measured by pCount). A range of
results was thrown out because it was either
constant or redundant data. The amount of
messages sent during the wired connection
runs greatly outnumbered those sent during
the wireless connection runs. Once we
reached a certain point during the wired
connection test in which it was inevitable
that no receiver would be sending a NACK

 11

Number of Receivers Dropped Over Time

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Time (Packet #)

of

 R
ec

ei
ve

rs
 D

ro
pp

ed
 (N

AC
Ks

 S
en

t)

WIRELESS

WIRED

anytime soon, the test was terminated and
recorded it as a perfect run. In order for the
comparison to be even, we also took out all
of the data points from X = 101 and above
from both sides.

 According to the scatter plot (Figure
X), the runs done on the wired network
show a perfect performance every single
time (i.e. none of the receivers were dropped
during the entire run). This shows that the
wired connection was reliable for the
number of users it was handling during the
testing phase. While the wired connection
results show a stable trend, the wireless
connection results show something
completely different. Looking back at the
scatter plot, there are data points in a much
greater variety of places which show that the
connection itself was unpredictable in the
sense that it was not known when a receiver
would send a NACK message to the sender.

 How can this be applied to IP
multicasting? The advantage of IP
multicasting over a wireless network is that
it takes up less bandwidth of the connection.
Initially this type of connection will take up
more bandwidth than a Unicast connection,
but each additional member of the multicast
group will take up less bandwidth than
another Unicast connection. Since IP
multicasting currently has scalability issues
in which the reliability of the transferred
data diminishes as the number of members
in multicast group grows. Implementing this
type of multicast connection over a wireless
network only compounds the reliability
issues the connection already has from the
beginning. What makes this method so
appealing is its use of UDP packets where
each packet can travel independently of each
other unlike TCP packets which require a
more direct approach with the transmission
of the information. One of the reasons why
IP multicasting is so unreliable is because it

uses UDP packets which are also unreliable
in nature. [1, 2] While there are more
methods of multicasting that exist, this one
is the easiest to set up and monitor.

Currently the second version of
Classroom Presenter makes use of IP
multicasting. Even though this program has
more effective and efficient algorithms than
MCast, the scalability issues still pose a
threat to the program’s performance due to
the wireless multicast connection it mainly
utilizes.

X. Related Work

Besides the “simpler” methods for
creating reliable multicasts discussed earlier,
various other methods have been proposed
and suggested. We will briefly examine a
few of them.

 Of the many approaches we came
along in our research, there was a common
theme in many of them: some form of
additional grouping. The first of these
approaches is the grouping with leaders
approach. In it, receivers are divided into
different groups, and assign them leaders.
Members within these subgroups
communicate with the leader, and in turn if
retransmission is required, the leader
communicates for the whole group to the
sender [9]. A slight alteration on this

Fig. 3 – Final test results

 12

approach is to have the leader maintain a
cache and to have it do the resending instead
of the original sender [3]. While a leader-
based approach was found to be more
effective for preventing problems within a
controlled wireless environment [10], such
solutions require extra work in software in
order to assign leaders and have them
maintain information on their peers inside
their subgroup.

 Another similar scheme is the tree-
based ACK approach, where again receivers
are grouped, except there is a more
hierarchical structure, and nodes only report
up to the next level of the hierarchy [11].
As was pointed out, this tree method faces
problems if the members within it change—
it is not very dynamic. Furthermore, special
protocols are required to manage these trees
for different multicast sessions, as was
pointed out by the authors.

 Grouping is also popular for methods
of data rate and congestion control. For rate
control, receivers are grouped according to
their maximum possible throughput rates, in
order to allow the sender to cater more
specifically to their network capabilities
without overwhelming any buffers [12, 5, 13,
and 14]. While this might be effective, to
implement such a procedure requires a great
deal of planning and testing to ensure that it
works properly, or the programmer may
only aggravate matters for the worse.

 There is one final use for grouping
receivers together: to keep from
overwhelming the sender [6]. Such a set up
might employ multiple multicast addresses
for the different groups, and further
hierarchies underneath. Our comments,
again, are to plan and test carefully.

 We also came across an interesting
approach that did not involve grouping

receivers together in any way. Rather, it
was a suggestion specifically meant for
wireless multicasting situations [15]. The
authors proposed using two channels for
wireless multicast—one for messages, and
one for sending busy tones to notify that the
message channel is not clear for sending.
There are two flaws to this approach: first, it
requires tying up a channel that could be
used for transmitting data instead of sending
a busy signal; and second, this approach, as
the authors indicated themselves, is not
really compatible with the IEEE 802.11
standards. We feel that programmers might
be better advised to pursue reliability via
other methods.

XI. Conclusion

While IP multicast remains to be the
most popular method of multicasting on the
Internet today, much improvement is needed
to ensure maximum efficiency and
reliability for data transfer, security, and
other such aspects of networking. Through
testing and results, we have concluded that
IP multicast can be reliable over a LAN
connection for a small scale (N < 30)
commercial setting. However, it still
remains unreliable and unpredictable over a
WLAN connection for the same amount of
clients in a multicast group. However, it is
safe to say that it is more efficient than
Unicast connections in the same
environment. This concept has been
reiterated throughout this paper and still
holds true to today’s standards. Different
methods still need to be researched and
developed before multicasting technology is
perfected to a point where minimal data loss
is present and the proper error correcting
algorithms are in place.

 13

XII. Acknowledgements

 This project would not have been at
all possible if it was not for Dr. Wenjun
Zeng, Dr. Haibin Lu, the University of
Missouri – Columbia, and the National
Science Foundation for heading up the REU
Site for Home Networking Technologies
program within the Computer Science
department. The academic advisors of the
students who participated in this project are
also acknowledged because it was them who
informed the students about the research
opportunity. We would also like to thank the
ACM, IEEE, and IETF for all the resources
that were used in this paper. Finally, a thank
you to the Microsoft Corporation for the
non-restricted, nonprofit use of their
programs.

XIII. References

[1] “IP Multicast,” Wikipedia, Wikimedia

Foundation, Inc., 2007. [Online].
Available:
http://en.wikipedia.org/wiki/IP_Multic
ast [Accessed July 16, 2007].

[2] “Classful Network,” Wikipedia,

Wikimedia Foundation, Inc., 2007.
[Online]. Available:
http://en.wikipedia.org/wiki/Classful_
network [Accessed July 16, 2007].

[3] Bartoli, Alberto. “Group-based

multicast and dynamic membership in
wireless networks with incomplete
spatial coverage,” Mobile Networks
and Applications, vol. 3, no. 12, 1998.
[Online] Available: The ACM Digital
Library, http://portal.acm.org/
[Accessed July 16, 2007].

[4] Auerbach, Joshua, et al. “Multicast

Group Membership Management,”
IEEE/ACM Transactions on

Networking, vol. 11, no. 1, February
2003. [Online] Available: The ACM
Digital Library, http://portal.acm.org/
[Accessed July 16, 2007]

[5] Deb, Supratim, and R. Srikant.

“Congestion Control for Fair
Resource Allocation in Networks with
Multicast Flows,” IEEE/ACM
Transactions on Networking, vol. 12,
no. 2, April 2004. [Online] Available:
The ACM Digital Library,
http://portal.acm.org/ [Accessed
July 16, 2007]

[6] Ammar, Mostafa H. “Probabilistic

Multicast: Generalizing the Multicast
Paradigm to Improve Scalability,”
INFOCOM '94. Networking for
Global Communications. 13th
Proceedings IEEE, June 1994.
[Online] Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[7] Holbrook, H., and B. Cain. “RFC 4607:

Source-Specific Multicast for IP,”
RFC Index, The Internet Engineering
Task Force, August 2006. [Online]
Available: The RFC Database,
http://www.rfc-editor.org/ [Accessed
July 16, 2007].

[8] Bhattacharyya, S. “RFC 3569: An

Overview of Source-Specific
Multicast (SSM),” RFC Index, The
Internet Engineering Task Force, July
2003. [Online] Available: The RFC
Database, http://www.rfc-editor.org/
[Accessed July 16, 2007].

[9] Kuri, Joy, and Sneha Kumar Kasera.

“Reliable Multicast in Multi-Access
Wireless LANs,” Wireless Networks,
vol. 7, no. 4, August 2001. [Online]
Available: The ACM Digital Library,

 14

http://portal.acm.org/ [Accessed July
16, 2007].

[10] Dujovne, Diego, and Theirry Turletti.

“Multicast in 802.11 WLANs: An
Experimental Study,” Proceedings of
the 9th ACM international symposium
on Modeling analysis and simulation
of wireless and mobile systems, 2006.
[Online] Available: The ACM Digital
Library, http://portal.acm.org/
[Accessed July 16, 2007].

[11] Levine, Brian Neil, David B. Lavo, and

J. J. Garcia-Luna-Aceves. “The case
for reliable concurrent multicasting
using shared ACK trees,” Proceedings
of the fourth ACM international
conference on Multimedia, 1997.
[Online] Available: The ACM Digital
Library, http://portal.acm.org/
[Accessed July 16, 2007].

[12] Bhattacharyya, Supratik, et al.

“Efficient Rate-Controlled Bulk Data
Transfer Using Multiple Multicast
Groups,” IEEE/ACM Transactions on
Networking, vol. 11, no. 6, December
2003. [Online] Available: The ACM
Digital Library, http://portal.acm.org/
[Accessed July 16, 2007].

[13] Floyd, Sally, et al. “A Reliable

Multicast Framework for Light-
Weight Sessions and Application
Level Framing,” IEEE/ACM
Transactions on Networking, vol. 5,
no. 6, December 1997. [Online]
Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[14] Kasera, Sneha Kumar, et al. “Scalable

Reliable Multicast Using Multiple
Multicast Channels,” IEEE/ACM
Transactions on Networking, vol. 8,

no. 3, June 2000. [Online] Available:
IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[15] Chaporkar, Prasanna, Anita Bhat, and

Saswati Sarkar. “An Adaptive
Strategy for Maximizing Throughput
in MAC layer Wireless Multicast,”
Proceedings of the 5th ACM
international symposium on Mobile ad
hoc networking and computing, 2004.
[Online] Available: The ACM Digital
Library, http://portal.acm.org/
[Accessed July 16, 2007].

[16] Makofske, David, and Kevin Almeroth.

Multicast Socket: Practical Guide for
Programmers. Boston: Morgan
Kaufmann Publishers, 2003.

For Further Reference and Reading

[17] Almeroth, Kevin C. “The Evolution of

Multicast: From the MBone to
Interdomain Multicast to Internet2
Deployment,” IEEE Network, vol. 14,
no. 1, Jan-Feb. 2000. [Online]
Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[18] Atwood, J. William. “A Classification

of Reliable Multicast Protocols,”
IEEE Network, vol. 18, no. 3, May-
June 2004. [Online] Available: IEEE
Xplore, http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[19] Braudes, R. and S. Zabele. “RFC 1458:

Requirements for Multicast
Protocols,” RFC Index, The Internet
Engineering Task Force, May 1993.
[Online] Available: The RFC
Database, http://www.rfc-editor.org/
[Accessed July 16, 2007].

 15

[20] Calderon, Maria, et al. “Active
Network Support for Multicast
Applications,” IEEE Network, vol. 12,
no. 3, May-June 1998. [Online]
Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[21] Deering, Stephen E., and David R.

Cheriton. “Multicast Routing in
Datagram Internetworks and Extended
LANs,” ACM Transactions on
Computer Systems, vol. 8, no. 2, May
1990. [Online] Available: The ACM
Digital Library, http://portal.acm.org/
[Accessed July 16, 2007].

[22] Deering, Stephen, et al. “The PIM

Architecture for Wide-Area Multicast
Routing,” IEEE/ACM Transactions on
Networking, vol. 4, no. 2, April 1996.
[Online] Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[23] Diot, Chris, et al. “Deployment Issues

for the IP Multicast Service and
Architecture,” IEEE Network, vol. 14,
no. 1, Jan-Feb. 2000. [Online]
Available: IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[24] Dubray, K. “RFC 2432: Terminology

for IP Multicast Benchmarking,” RFC
Index, The Internet Engineering Task
Force, October 1998. [Online]
Available: The RFC Database,
http://www.rfc-editor.org/ [Accessed
July 16, 2007].

[25] Mockapetris, Paul V. “Analysis of

Reliable Multicast Algorithms in
Local Networks,” Proceedings of the
eighth symposium on Data
communications, 1983. [Online]

Available: The ACM Digital Library,
http://portal.acm.org/ [Accessed July
16, 2007].

[26] Ratnasamy, Sylvia, Andrey

Ermolinskiy, and Scott Shenker.
“Revisiting IP Multicast,”
Proceedings of the 2006 conference
on Applications, technologies,
architectures, and protocols for
computer communications, 2006.
[Online] Available: The ACM Digital
Library, http://portal.acm.org/
[Accessed July 16, 2007].

[27] Stopp, D. and B. Hickman. “RFC 3918:

Methodology for IP Multicasting
Benchmarking,” RFC Index, The
Internet Engineering Task Force,
October 2004. [Online] Available:
The RFC Database, http://www.rfc-
editor.org/ [Accessed July 16, 2007].

[28] Thaler, D., B. Fenner, and B. Quinn.

“RFC 3678: Socket Interface
Extensions for Multicast Source
Filters,” RFC Index, The Internet
Engineering Task Force, January 2004.
[Online] Available: The RFC
Database, http://www.rfc-editor.org/
[Accessed July 16, 2007].

[29] Van Meighem, Piet, Gerard

Hooghiemstra, and Remco van der
Hofstad. “On The Efficiency of
Multicast,” IEEE/ACM Transactions
on Networking, vol. 9, no. 6,
December 2001. [Online] Available:
IEEE Xplore,
http://ieeeexplore.ieee.org/
[Accessed July 16, 2007].

[30] Varshney, Upkar. “Multicast Over

Wireless Networks,” Communications
of the ACM, vol. 45, no. 12, December
2002. [Online] Available: The ACM

 16

Digital Library, http://portal.acm.org/
[Accessed July 16, 2007].

[31] Whetton, B., et al. “RFC 3048: Reliable

Multicast Transport Building Blocks
for One-to-Many Bulk-Data
Transfer,” RFC Index, The Internet
Engineering Task Force, January 2001.
[Online] Available: The RFC
Database, http://www.rfc-editor.org/
[Accessed July 16, 2007].

